Software Engineering

ISSN Online: 2376-8037 ISSN Print: 2376-8029

Archive Home / Archive

Volume 7, Issue 3, September 2019

  • Authors: Joseph R. Laracy, Thomas Marlowe

    Abstract: The definition and application of software and hardware patterns have been a major and very positive development in the field of computer engineering, in tandem with the deployment of agile and process architecture methodologies. In this article, we show how five time-triggered, real time system patterns developed by Michael J. Pont can be effectively employed to architect a low power, low cost flight controller. We adopt and apply Pont’s powerful pattern language for our research. The target platform is an ultra-light aircraft with tight constraints on mass and volume of any control hardware. Ultra-light in this context means that the aircraft has only one seat; weighs less than 254 pounds (115 kg) empty weight; has a maximum fuel capacity of 5 U.S. gallons (19 L); and has a top speed of 55 knots (102 km/h; 63 mph) calibrated airspeed at full power in level flight. We utilize the reliable Infineon C515C microcontroller, a member of the classic 8051 family of controllers for the hardware platform. This research makes a contribution to the engineering cybernetic issues of human-machine interface and control of an ultra-light aircraft.

    Received: Jun. 24, 2019 Accepted: Jul. 23, 2019 Published: Aug. 15, 2019

    DOI: 10.11648/j.se.20190703.11 View: Downloads:

  • Authors: ZarifIqbal Khero, Farhan Hussain Wagan, Naila Qadir Hisbani

    Abstract: Flood 2010 began in late July, resulting from heavy monsoon rains in Khyber Pakhtunkhwa, Punjab, Balochistan and Sindh in Pakistan. Over all Pakistan’s one-fifth area was affected by flood. According to Government data, flood directly affected about 20 million people, mostly by destruction of property, livelihood and infrastructure with a death toll of close to 2000. Indus Basin Irrigation system is one of the world's largest Irrigation system and the largest system in Pakistan. It covers Area of 17.2 Mha. Indus river basin irrigation system has three major reservoirs, sixteen barrages, two head works, two siphons across major rivers, 12 inter river link canals and 44000irrigation canal mileage. Sindh irrigation system lies below Guddu barrage, the first barrage in Sindh, enters Sindh province at a R.L. of (75m 246ft) above mean sea level. After Flood 2010, it was important to study the region of sukkur and sukkur barrage to control high flood with safe flow to avoid massive destruction. Almost one fifth portion of Pakistan was submerged in Flood water. For future planning it is important to take precautionary measures and avoid destructions at sukkur barrage. Sukkur Barrage has network based on seven canals (9923 km) 6166 miles long, feeding the largest irrigation system in the world, with more than 7.63 million acres of irrigated land which is approximately 25 percent of total canal irrigated area of the country. Structure of barrage is based on 66 spans, each 60 feet and weighing 50 tons. Here, Goal of research study is to present a hypothetical flood in Indus River at point of Sukkur barrage with potential changes in geometry of river in premises of Sukkur barrage. To measure technical analysis of sukkur barrage a computer based model is prepared through HEC RAS software. software is capable to moderate the satellite image and modify it according to contour's of area and imbedding Computer Added Design in model to analyze impact of flood 2010 at Sukkur Barrage. levees are also generated in model to overcome the problem of overtopping of flood water. Analysis shows results same as satellite images were taken during flood and impact of velocity pressure (showing water particle tracing) at gates were also measured as depositing of silt at upstream of barrage.

    Received: Jun. 21, 2019 Accepted: Aug. 1, 2019 Published: Aug. 19, 2019

    DOI: 10.11648/j.se.20190703.12 View: Downloads:

  • Authors: Mohiniso Baxromovna Hidirova, Adhamjon Akramovich Hasanov

    Abstract: This article is devoted to the analysis of research work conducted using methods of mathematical modeling of the activity of the thyroid gland. The article gives a brief review of various methods of mathematical modeling of the dynamics of the thyroid gland. Most authors have indicated a mathematical modeling of the dynamics of the thyroid gland. Mathematical modeling of regulator of regulation of thyroid gland cells and computer model using Runge-Kutta method on the basis of mathematical model. Based on experimental experiments using a computer model, characteristic regimes of the dynamics of the regulatory mechanisms of the thyroid gland cells were analyzed. Qualitative and quantitative study of equations of mathematical models of cellular regulatory mechanisms community of a follicle of the thyroid gland showed the presence of a steady state modes sustainable, stable self-oscillating behavior, irregular functioning (chaos) and the effect of sudden destructive changes ("black hole") in the number of cells in the follicle of the thyroid gland. Irregular vibrations and a “black hole” can be identified by uncontrolled reproduction and a sharp destructive change in thyroid follicle cells. Parametric portrait, which clearly highlights areas of homogeneous solutions of the model equations cellular regulatory mechanisms community of a follicle of the thyroid gland, was presented.

    Received: Jul. 8, 2019 Accepted: Aug. 19, 2019 Published: Sep. 3, 2019

    DOI: 10.11648/j.se.20190703.13 View: Downloads: